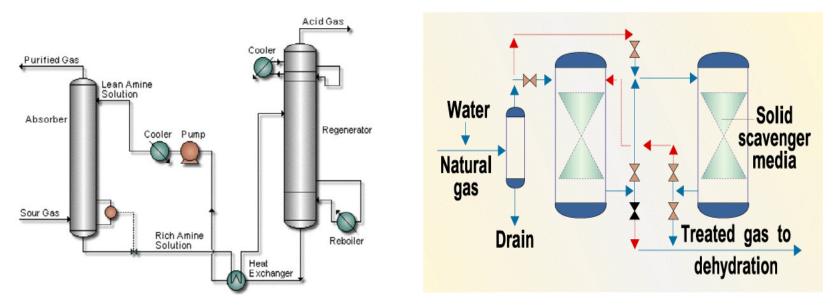
PROCESS OF DIRECT CATALYTIC OXIDATION OF HYDROGEN SULFIDE TO ELEMENTAL SUFUR FOR PURIFICATION OF GAS STREAMS FORMED UPON HIGH-SULFUR CRUDE EXTRACTION AND PROCESSING

PROFESSOR ZINFER R. ISMAGILOV

BORESKOV INSTITUTE OF CATALYSIS

KAZAN REPUBLIC OF TATARSTAN FEBRUARY, 20-21 2006

HYDROGEN SULFIDE EMISSIONS UPON EXTRACTING AND PROCESSING OF HIGH-SULFUR CRUDE IN REPUBLIC OF TATARSTAN


Oil-associated gases

Hydrodesulfurization (HDS) of oil fractions at refineries

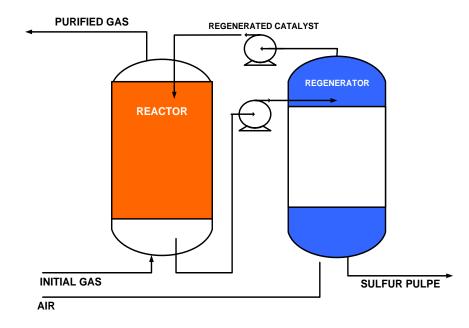
Total amount in Republic of Tatarstan up to billion nm^3 per year. H₂S content – 1.5 % vol. (average) Total amount in Republic of Tatarstan up to 200 millions nm³ per year

Pokonova Yu. Neft` i nefteprodukty. Handbook, Moscow, 2003.

ADSORPTIVE METHODS OF GASEOUS STREAMS PURIFICATION FROM HYDROGEN SULFIDE

Gas stream purification from H₂S with amine solution

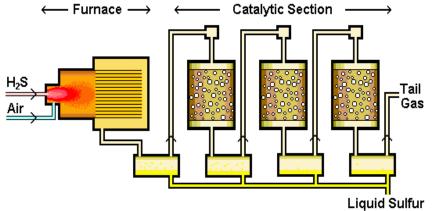
Gas stream purification from H₂S with solid sorbents


COMMON DRAWBACKS

- •A methods for only isolations of acid components (H_2S and CO_2) from purified gas;
- •The processes are noncontinuous (adsorption-regeneration steps);
- •In use only in combination with the subsequent hydrogen sulfide processing technology e.g. Claus process;

HOMOGENEOUS DIRECT OXIDATION HYDROGEN SULFIDE TO ELEMENTARY SULFUR

The examples of the commercially available processes:


ARI - Lo-Cat I[®], ARI - Lo-Cat-II[®] by Wheelabrator Clean Air Systems, Inc. SulFerox[®] by Shell

DRAWBACKS

The process is non-continuous (the oxidation and regeneration steps) High corrosion of equipment because of sulfuric acid formation Use of liquid reagents

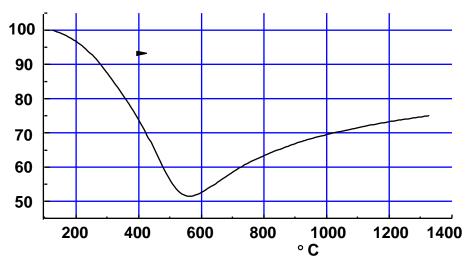
HETEROGENEOUS OXIDATION OF HYDROGEN SULFIDE WITH SULFUR DIOXIDE (CLAUS PROCESS)

Modifications: Superclaus[®] COPE[®]

DISADVANTAGES

- The process is consisted of several stages;
- Deactivation of the catalyst due to coke formation or sulfidation;
- Need additional technological processes of tail gas purification;
- Emissions of toxic secondary side products such as COS, CS₂, sulfuric acid, carbon monoxide, nitrogen oxides;
- Difficult to build and operate small capacity units.

DIRECT OXIDATION OF HYDROGEN SULFIDE

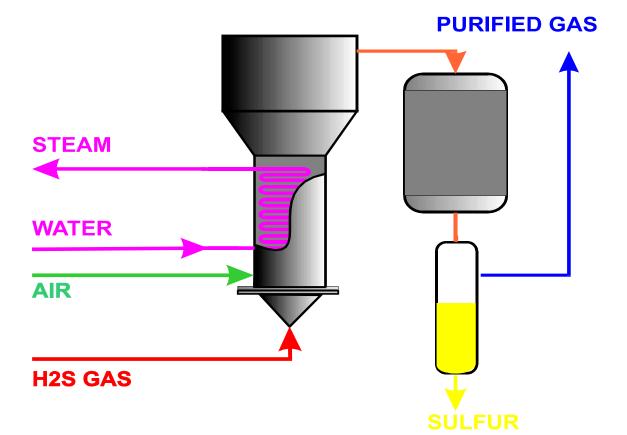

 $\begin{array}{l} \text{MAIN REACTION} \\ n \ H_2 S + n/2 \ O_2 \ \Rightarrow S_n + n \ H_2 O + Q \quad (1) \end{array}$

SIDE REACTIONS

 $H_2S + 3/2 O_2 \Rightarrow SO_2 + H_2O$

 $2 H_2 S + SO_2 \Rightarrow 3S + 2 H_2 O$

Theoretical sulfur yield, %



MAIN ADVANTAGES OF DIRECT OXIDATION OF HYDROGEN SULFIDE PROCESS

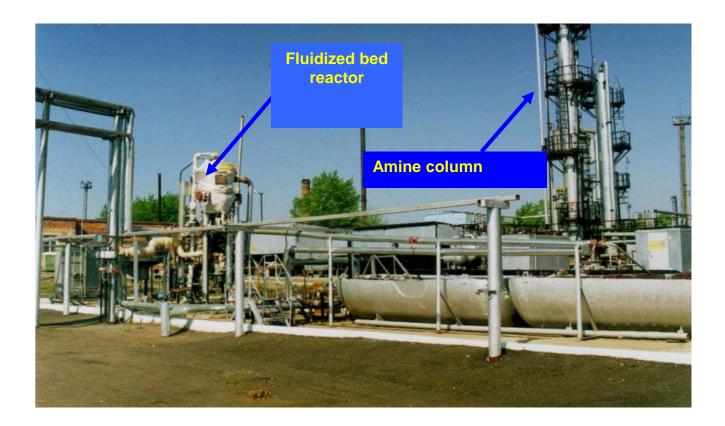
- One catalytic reactor allows attaining of H₂S conversion of up to 98%;
- "Soft" reaction conditions (T=220-280°C) allow selective oxidation of H₂S in it's presence in the mixture with hydrocarbons;
- Possibility to build and operate units of small and medium size.

However, since reaction (1) is highly exothermic (ΔH = -221 kJ/mole) technological problems of efficient heat removal from a fixed catalyst bed limit the application of this technology to gas streams with H₂S concentration higher than 10 vol.%.

DIRECT SELECTIVE OXIDATION OF HYDROGEN SULFIDE IN REACTOR WITH FLUDIZED BED OF CATALYST

Purification of highly concentrated streams, such as "acid", natural and hydrorefining gases. There are no restrictions on H_2S concentration in initial gases. (Смотреть)

 Ismagilov Z.R., Zamaraev K.I., Khairulin S.R. et al. US Patent No 4.886.649 (1989).
Ismagilov Z.R. et al. Russiann Refiner tests new One-Stage H₂S Removal Process. Oil & Gas Journal, 1994. March, pp.81-82


BACKGROUND OF THE PROJECT DEVELOPMENT WITH FLUDIZED BED REACTOR

Place	Operation	Year	Hydrogen sulfide
Object	conditions		removal efficiency,
	a) scale		%
	b) gas supply		
Astrakhan	pilot	1987	98
natural gas	up to 50 nm³/h		
C(H ₂ S)-27 vol.%			
Astrakhan	pilot	1988	98
natural gas	up to 50nm³/h		
C(H ₂ S)-27 vol.%			
Astrakhan	pilot	1991	98
natural gas	up to 20nm³/h		
C(H ₂ S)-27 vol.%			
Ufa Refinery	pilot	1990	98
hydrodesulfu-	up to 50 nm³/h		
rization gas			
C(H ₂ S)-70% vol			

FLUIDIZED BED REACTOR

Place	Operation	Year	Hydrogen sulfide
Object	conditions		removal
	a) scale		efficiency, %
	b) gas supply		
Shkapovo GPP(*)	semi-industrial	1995	98
acid gas C(H ₂ S)-	up to 350 nm3		
65% vol	/h		
Bavly oil field	semi-industrial	2005	99
acid gas C(H ₂ S)-	up to 50 nm3 /h		
50% vol			

GPP – gas processing plant

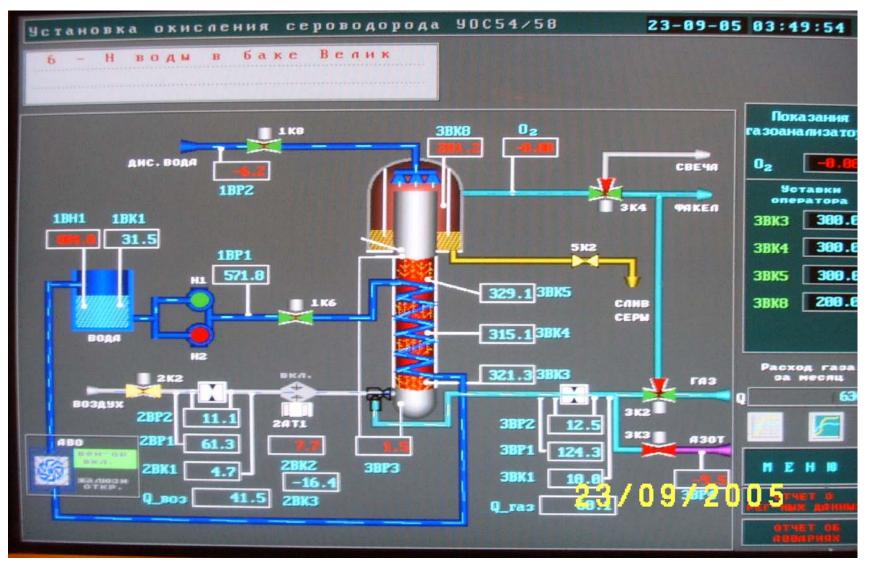
The Claus process replacement (Bavly high-sulfur crud deposit at Republic of Tatarstan) Industrial plant (reactor with fluidized bed of granulated catalyst). Field proven efficiency of H₂S removal > 99%.

REACTOR WITH FLUIDIZED BED OF GRANULATED CATALYST (BAVLY CRUD DEPOSIT AT REPUBLIC OF TATARSTAN)

ANALYSIS OF TAIL GASES OF INDUSTRIAL PLANT (Bavly)

IEK. 26 2005 13:38 CT (analysis certificate)

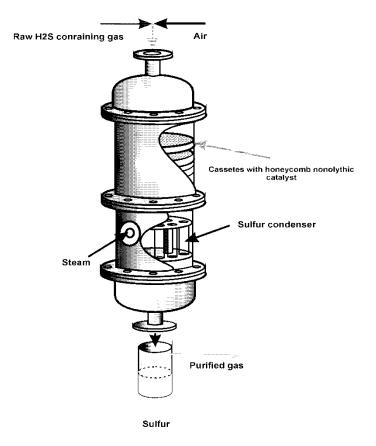
N	е <mark>Компоне</mark> нты	Формула	Канцан- трация обёмная % об.
	Углекислый газ	CO ₂	33,85
	2 Кислород	O ₂	0,43
	A30T	N ₂	64,45
	Сероводород	H,S	0,29
	5 Метан	CH,	0,00
	в. Этан	C ₂ H ₄	0,14
	7 Пролан	C ₂ H,	0,54
	в изо-Бутан	i-C ₄ H ₁₂	0,05
	н-Бутан	n-C.H.	0,14
1	0 изо-Пентан	I-C,H ₁₇	0,05
1	1 н-Пентан	n-C ₃ H ₁₂	0,06
1	2 Гексан	CeH14	0,00
	Сумма		100,0


Hydrogen Sulfide Content in Initial Acid Gas- **54% vol.**

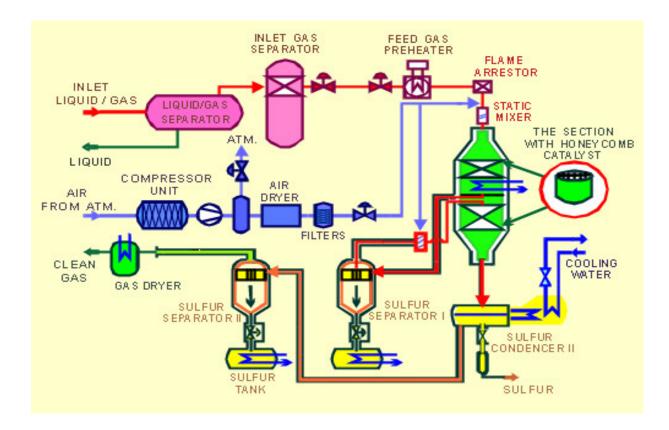
Sulfur Yield – 99.5%

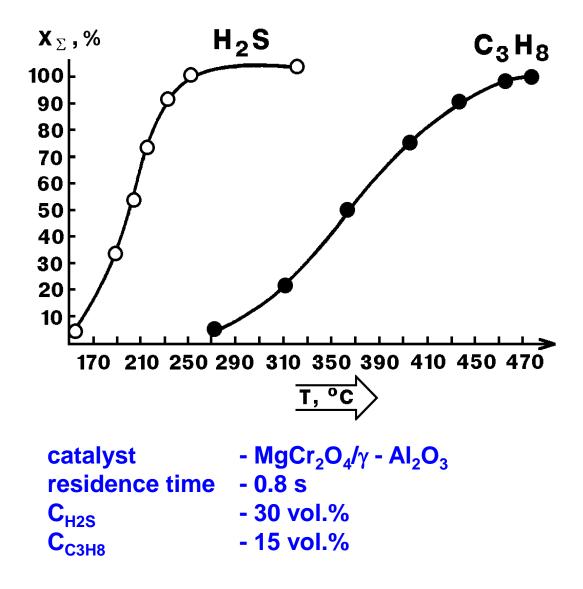
Аккредитовзиная газояналитическал лаборатория ЦНИПР управления "Татнефтегазпареработка" ОАО "Татнефть" адрес: РТ, г.Альметьевск, пром. зона, ул.Индустриальная тел: 37-17-67; факс: 31-86-59, 37-17-67 Аттестат эккредитации № РОСС RU.0001 613484 от 27.09.2002


Ермолаева А.С Зав. лабораторией


SCREEN SHOT OF THE COMPUTATIONAL PROCESS CONTROL

DIRECT SELECTIVE OXIDATION OF HYDROGEN SULFIDE IN REACTOR WITH HONEYCOMB MONOLYTHIC CATALYST


Purification of oil-associated gases, tail-gases, bio-gas, geothermal steam



Ismagilov Z.R., Kerzhentsev M.A., Khairulin S.R. et al., *Hydrocarbon Technology International, Quarterly, Winter Issue 1994/1995, pp.59-64.*

This process modification can be used for efficient removing H₂S directly from the oil-associated gas streams. Depending on the desired level of H₂S removal and project economics, the treated gas may be used as an onsite fuel to power fired heater equipment, compressors, power generation, or be marketed for sale

CATALYTIC OXIDATION OF H₂S IN PRESENCE OF PROPANE

BACKGROUND OF THE PROJECT DEVELOPMENT WITH HONEYCOMB MONOLYTH REACTOR

Place	Operation	Year	Hydrogen sulfide
Object	conditions		removal efficiency,
	a) scale		%
	c) gas supply		
	d) operation		
	pressure		
Ufa Refinery	fixed bed	1989-	98
tail gas of Claus	pilot	1990	
process	up to 20 nm3 /h		
C(H ₂ S)-2% vol	pressure - atm.		
Kamchatka	pilot	1989-	99.9
peninsula	up to 0.5 tn. steam/h	1990	2500h of
geothermal steam	P up to 1.0 MPa		continuous work
C(H ₂ S) < 1% vol			
C(H ₂ O) > 99%			
Astrakhan GPP(*)	pilot	1989-	98
tail gases of	up to 20 nm ³ /h	1990	
Claus process	pressure - atm.		
C(H ₂ S)- 2 vol.%			

HONEYCOMB MONOLYTH REACTORS

Place	Operation	Year	Hydrogen
Object	conditions		sulfide
	a) scale		removal
	c) gas supply		efficiency, %
	d) operation		
	pressure		
Orenburg GPP	up to 20 nm ³ /h	1990	98
gases of	pressure up to		
zeolites	5.0 MPa		
regeneration			
C(H ₂ S)- 2 vol.%			
C(RSH)- 5% vol			
Novo-Ufimsky	semi-industrial	1994	98
Refinery	7000 nm³/h		
tail gas of			
Claus process			
C(H ₂ S)- 2% vol			

SEMI-INDUSTRIAL UNIT FOR PURIFICATION OF CLAUS PROCESS TAIL GAS

CAPACITY UP TO 7000 nm³/hour

SUMMARIZED ADVANTAGES OF THE BIC TECHNOLOGIES

- 1. The creation of compact, highly efficient, one-stage units that can be mounted:
- On-site for direct purification of oil associated gas;
- On site for treatment of sour gas after amine unites;
- At refineries and gas processing plants as alternative to the Claus sulfur recovery units.
- 2. The substantial improvement of environment, due to excluding of hazardous emissions and wastes.
- 3. Production of the fuel gas and elemental sulfur of high purity.
- 4. Diminishment of the capital outlays (in comparison with Claus units 3-4 times).
- 5. Diminishment of the service costs (in comparison with Claus units 4-5 times).

The payback period for the direct oxidation units – 0.5-1.5 years.

OUR PARTNERS:

- Joint-Stock Company "VNIIUS"
- Process design
- Joint-Stock Company "TATNEFT"
- Oil-associated gas purification
- Joint-Stock Company "Tatneftekhiminvest-holding"
- Technology implementation in Republic of Tatarstan
- The Russian Joint-Stock Company "Gazprom"
- Natural gas purification
- Joint-Stock Company "Bashnefekhim"
- Hydrodesulfurization gases purification at refineries

CONTACT INFORMATION:

Professor Zinfer R. Ismagilov: Boreskov Institute of Catalysis Laboratory of Environmental Catalysis

Pr.Akademika Lavrentieva, 5 Novosibirsk,Russia. Russia, 630090 Phone: +7-383-326-94-25, Fax: + 7-383-330-62-19, E-mail: zri@catalysis.ru URL: http://www.en.catalysis.ru/